Reverse engineering is very common in such diverse fields as software engineering, entertainment, automotive, consumer products, microchips, chemicals, electronics, and mechanical designs. For example, when a new machine comes to market, competing manufacturers may buy one machine and disassemble it to learn how it was built and how it works.
Reverse engineering enables the duplication of an existing part by capturing the component’s physical dimensions, features, and material properties. There are a wide range of reasons for reverse engineering an object, including:
Legacy Components – For many components that were designed and manufactured years ago, there are no existing 2D drawings or 3D CAD data from which to reproduce the object. Here, reverse engineering is a vital means to gain the information to recreate the product.
Original Equipment Manufacturer (OEM) issues – If the OEM is no longer trading or has lost design measurements, then Reverse Engineering will supply the vital product information to continue manufacturing of that object.
Design Development, Part Testing & Analysis – Through reverse engineering, a 3D product can be quickly captured in digital form and remodeled or analyzed in order to achieve improved design iterations.
Competitor Analysis – Any organization can analyze competitor products through reverse engineering.
Bespoke and Ancient objects – Where there is no information about the dimensions of an object except for the physical item itself, the quickest and most reliable way to reproduce it will be by reverse engineering. Where a product is organic in shape (not a standard geometry such as cuboid or cylindrical), designing in CAD may be challenging as it can be difficult to ensure that the CAD model will be acceptably close to the sculpted model. Reverse engineering avoids this problem as the physical model is the source of the information for the CAD model.
Modern manufacturing – methods such as Additive Manufacturing rely on reverse engineering.
Digital Archiving – Museum pieces and historic artefacts can be captured through 3D scanning, then reverse engineered and the resulting CAD data can be held in case of any future damage to the object or any need to reproduce parts of the item.
E-SPIN being active in helping enterprise customers to implement enterprise digital transformation technology to achieve scale, scope and speed. E-SPIN since 2005, already in the business of supply, consultancy, integration, training and maintenance of various supplied for enterprise customers and government agencies. Feel free to contact E-SPIN for your project and operation requirements.